123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- /**
- * Contains methods for transforming point on sphere to
- * Cartesian coordinates using various projections.
- * @class
- */
- jvm.Proj = {
- degRad: 180 / Math.PI,
- radDeg: Math.PI / 180,
- radius: 6381372,
- sgn: function(n){
- if (n > 0) {
- return 1;
- } else if (n < 0) {
- return -1;
- } else {
- return n;
- }
- },
- /**
- * Converts point on sphere to the Cartesian coordinates using Miller projection
- * @param {Number} lat Latitude in degrees
- * @param {Number} lng Longitude in degrees
- * @param {Number} c Central meridian in degrees
- */
- mill: function(lat, lng, c){
- return {
- x: this.radius * (lng - c) * this.radDeg,
- y: - this.radius * Math.log(Math.tan((45 + 0.4 * lat) * this.radDeg)) / 0.8
- };
- },
- /**
- * Inverse function of mill()
- * Converts Cartesian coordinates to point on sphere using Miller projection
- * @param {Number} x X of point in Cartesian system as integer
- * @param {Number} y Y of point in Cartesian system as integer
- * @param {Number} c Central meridian in degrees
- */
- mill_inv: function(x, y, c){
- return {
- lat: (2.5 * Math.atan(Math.exp(0.8 * y / this.radius)) - 5 * Math.PI / 8) * this.degRad,
- lng: (c * this.radDeg + x / this.radius) * this.degRad
- };
- },
- /**
- * Converts point on sphere to the Cartesian coordinates using Mercator projection
- * @param {Number} lat Latitude in degrees
- * @param {Number} lng Longitude in degrees
- * @param {Number} c Central meridian in degrees
- */
- merc: function(lat, lng, c){
- return {
- x: this.radius * (lng - c) * this.radDeg,
- y: - this.radius * Math.log(Math.tan(Math.PI / 4 + lat * Math.PI / 360))
- };
- },
- /**
- * Inverse function of merc()
- * Converts Cartesian coordinates to point on sphere using Mercator projection
- * @param {Number} x X of point in Cartesian system as integer
- * @param {Number} y Y of point in Cartesian system as integer
- * @param {Number} c Central meridian in degrees
- */
- merc_inv: function(x, y, c){
- return {
- lat: (2 * Math.atan(Math.exp(y / this.radius)) - Math.PI / 2) * this.degRad,
- lng: (c * this.radDeg + x / this.radius) * this.degRad
- };
- },
- /**
- * Converts point on sphere to the Cartesian coordinates using Albers Equal-Area Conic
- * projection
- * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a>
- * @param {Number} lat Latitude in degrees
- * @param {Number} lng Longitude in degrees
- * @param {Number} c Central meridian in degrees
- */
- aea: function(lat, lng, c){
- var fi0 = 0,
- lambda0 = c * this.radDeg,
- fi1 = 29.5 * this.radDeg,
- fi2 = 45.5 * this.radDeg,
- fi = lat * this.radDeg,
- lambda = lng * this.radDeg,
- n = (Math.sin(fi1)+Math.sin(fi2)) / 2,
- C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1),
- theta = n*(lambda-lambda0),
- ro = Math.sqrt(C-2*n*Math.sin(fi))/n,
- ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n;
- return {
- x: ro * Math.sin(theta) * this.radius,
- y: - (ro0 - ro * Math.cos(theta)) * this.radius
- };
- },
- /**
- * Converts Cartesian coordinates to the point on sphere using Albers Equal-Area Conic
- * projection
- * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a>
- * @param {Number} x X of point in Cartesian system as integer
- * @param {Number} y Y of point in Cartesian system as integer
- * @param {Number} c Central meridian in degrees
- */
- aea_inv: function(xCoord, yCoord, c){
- var x = xCoord / this.radius,
- y = yCoord / this.radius,
- fi0 = 0,
- lambda0 = c * this.radDeg,
- fi1 = 29.5 * this.radDeg,
- fi2 = 45.5 * this.radDeg,
- n = (Math.sin(fi1)+Math.sin(fi2)) / 2,
- C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1),
- ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n,
- ro = Math.sqrt(x*x+(ro0-y)*(ro0-y)),
- theta = Math.atan( x / (ro0 - y) );
- return {
- lat: (Math.asin((C - ro * ro * n * n) / (2 * n))) * this.degRad,
- lng: (lambda0 + theta / n) * this.degRad
- };
- },
- /**
- * Converts point on sphere to the Cartesian coordinates using Lambert conformal
- * conic projection
- * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a>
- * @param {Number} lat Latitude in degrees
- * @param {Number} lng Longitude in degrees
- * @param {Number} c Central meridian in degrees
- */
- lcc: function(lat, lng, c){
- var fi0 = 0,
- lambda0 = c * this.radDeg,
- lambda = lng * this.radDeg,
- fi1 = 33 * this.radDeg,
- fi2 = 45 * this.radDeg,
- fi = lat * this.radDeg,
- n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ),
- F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n,
- ro = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi / 2 ), n ),
- ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n );
- return {
- x: ro * Math.sin( n * (lambda - lambda0) ) * this.radius,
- y: - (ro0 - ro * Math.cos( n * (lambda - lambda0) ) ) * this.radius
- };
- },
- /**
- * Converts Cartesian coordinates to the point on sphere using Lambert conformal conic
- * projection
- * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a>
- * @param {Number} x X of point in Cartesian system as integer
- * @param {Number} y Y of point in Cartesian system as integer
- * @param {Number} c Central meridian in degrees
- */
- lcc_inv: function(xCoord, yCoord, c){
- var x = xCoord / this.radius,
- y = yCoord / this.radius,
- fi0 = 0,
- lambda0 = c * this.radDeg,
- fi1 = 33 * this.radDeg,
- fi2 = 45 * this.radDeg,
- n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ),
- F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n,
- ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n ),
- ro = this.sgn(n) * Math.sqrt(x*x+(ro0-y)*(ro0-y)),
- theta = Math.atan( x / (ro0 - y) );
- return {
- lat: (2 * Math.atan(Math.pow(F/ro, 1/n)) - Math.PI / 2) * this.degRad,
- lng: (lambda0 + theta / n) * this.degRad
- };
- }
- };
|